Hyperosmolarity potentiates toxic effects of benzalkonium chloride on conjunctival epithelial cells in vitro

نویسندگان

  • Chloé Clouzeau
  • David Godefroy
  • Luisa Riancho
  • William Rostène
  • Christophe Baudouin
  • Françoise Brignole-Baudouin
چکیده

PURPOSE Benzalkonium chloride (BAK), the most commonly used preservative in eye drops, is known to induce ocular irritation symptoms and dry eye in long-term treated patients and animal models. As tear film hyperosmolarity is diagnostic of some types of dry eye disease, we determined in vitro on conjunctival epithelial cells the cytoxicity of BAK in hyperosmolar conditions through cell viability, apoptosis, and oxidative stress assays. METHODS The Wong Kilbourne derivative of Chang conjunctival epithelial cells were cultured for 24 h or 48 h either in NaCl-induced hyperosmolar conditions (400-425-500 mOsM), in low concentrations of BAK (10(-4)%, 3.10(-4)%, and 5.10(-4)%), or in combination of both. We investigated cell viability through lysosomal integrity evaluation, cell death (cell membrane permeability and chromatin condensation), and oxidative stress (reactive oxygen species, superoxide anion) using spectrofluorimetry. Immunohistochemistry was performed for cytoskeleton shrinkage (phalloidin staining), mitochondrial permeability transition pore (cytochrome c release), the apoptosis effector active caspase-3, and the caspase-independent apoptosis factor AIF. We also observed early effects induced by the experimental conditions on the conjunctival cell layers using phase contrast imaging of live cells. RESULTS As compared to standard culture solutions, hyperosmolar stress potentiated BAK cytotoxicity on conjunctival cells through the induction of oxidative stress; reduction of cell viability; cell membrane permeability increase; cell shrinkage with cell blebbing, as shown in phase contrast imaging of live cells; and chromatin condensation. Like BAK, but to a much lesser extent, hyperosmolarity increased cell death in a concentration-dependent manner through a caspase-dependent apoptosis characterized by a release of cytochrome c in the cytoplasm from mitochondria and the activation of caspase-3. Moreover, the caspase-independent apoptosis factor AIF was found translocated from mitochondria to the nucleus in both conditions. CONCLUSIONS This study showed increased cytotoxic effects of BAK in hyperosmotic conditions, with characteristic cell death processes, namely caspase-dependent and independent apoptosis and oxidative stress. As BAK is known to disrupt tear film, which could promote evaporative dry eye and tear hyperosmolarity, BAK could promote the conditions enhancing its own cytotoxicity. This in vitro hyperosmolarity model thus highlights the risk of inducing a vicious cycle and the importance of avoiding BAK in patients with dry eye conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative study on the cytotoxic effects of benzalkonium chloride on the Wong-Kilbourne derivative of Chang conjunctival and IOBA-NHC cell lines

PURPOSE The Wong-Kilbourne derivative of Chang conjunctiva-derived cell line has been widely used for toxicological and functional in vitro studies on the ocular surface. The common reserve to this cell line is the reported contamination with HeLa cells. Thus, the IOBA-NHC spontaneously immortalized conjunctival epithelial cell line has been recently developed and did not show other cell type c...

متن کامل

400-407 Ciancaglini:Shoja

The toxicity of preservatives on conjunctival epithelium has been widely described in glaucomatous patients topically treated, suggesting both an indirect effect on the lacrimal film and a direct toxic action on epithelial cells (1). Previous studies indicate that long-term administration of preservative-containing eyedrops can lead to chronic conjunctival inflammation, ocular surface impairmen...

متن کامل

Stromal opacity secondary to preservative in dilating drops - A case report and review of literature

Preservatives in ophthalmic solutions have long been known to cause toxic effects on the cornea. The most frequently used preservative in eye drops, and one that has among the highest toxicity, is benzalkonium chloride (BAC)[1-3]. This quarternary ammonium has been shown to have a variety of pathological effects, including tear film instability, conjunctival squamous metaplasia, breakdown of co...

متن کامل

Effects of Benzalkonium Chloride on THP-1 Differentiated Macrophages In Vitro

PURPOSE To characterize the effects of benzalkonium chloride (BAK) in THP-1 differentiated cells in vitro. METHODS Macrophages were obtained after differentiation of THP-1 cells, a human monocytic leukemia cell line. Macrophages were exposed for 24 h to 33 nM (10(-5)%) benzalkonium chloride (BAK), 10 nM dinitrochlorobenzene (DNCB), 100 ng/mL lipopolysaccharide (LPS), 5 ng/mL tumor necrosis fa...

متن کامل

Conjunctival proinflammatory and proapoptotic effects of latanoprost and preserved and unpreserved timolol: an ex vivo and in vitro study.

PURPOSE To compare the toxicity of latanoprost and preserved and unpreserved timolol on conjunctival cells. Expression of inflammatory markers and MUC5AC-related mucin production were evaluated by impression cytology in a case-control ex vivo study. The proapoptotic effect of the same drugs was also evaluated in vitro in a conjunctival cell line and compared with that of benzalkonium chloride (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2012